Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Behav Brain Res ; 445: 114362, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36889464

RESUMO

Promising evidence points to gestational physical exercise as the key to preventing various disorders that affect the offspring neurodevelopment, but there are no studies showing the impact of resistance exercise on offspring health. Thus, the aim of this study was to investigate whether resistance exercise during pregnancy is able to prevent or to alleviate the possible deleterious effects on offspring, caused by early life-stress (ELS). Pregnant rats performed resistance exercise throughout the gestational period:they climbed a sloping ladder with a weight attached to their tail, 3 times a week. Male and female pups, on the day of birth (P0), were divided into 4 experimental groups: 1) rats of sedentary mothers (SED group); 2) rats of exercised mothers (EXE group); 3) rats of sedentary mothers and submitted to maternal separation (ELS group) and 4) rats of exercised mothers and submitted to MS (EXE + ELS group). From P1 to P10, pups from groups 3 and 4 were separated from their mothers for 3 h/day. Maternal behavior was assessed. From P30, behavioral tests were performed and on P38 the animals were euthanized and prefrontal cortex samples were collected. Oxidative stress and tissue damage analysis by Nissl staining were performed. Our results demonstrate that male rats are more susceptible to ELS than females, showing impulsive and hyperactive behavior similar to that seen in children with ADHD. This behavior was attenuated by the gestational resistance exercise. Our results demonstrate, for the first time, that resistance exercise performed during pregnancy seems to be safe for the pregnancy and offspring's neurodevelopment and are effective in preventing ELS-induced damage only in male rats. Interestingly, resistance exercise during pregnancy improved maternal care and it is reasonable to propose that this finding may be related to the protective role on the animals neurodevelopment, observed in our study.


Assuntos
Experiências Adversas da Infância , Treinamento Resistido , Gravidez , Humanos , Ratos , Animais , Feminino , Masculino , Ratos Wistar , Privação Materna , Mães
2.
Exp Neurol ; 353: 114071, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398338

RESUMO

Impulsivity, as observed in patients diagnosed with Attention-deficit/hyperactivity disorder (ADHD), can induce dysregulated behaviors such as binge eating and drug addiction. We previously demonstrated that neonatal hypoxia-ischemia (HI) resulted in ADHD-like behaviors in rats and that methylphenidate (MPH) administration (the first therapeutic option for ADHD) reversed these deficits. Here, we aimed at investigating addictive-like behaviors, such as the reward-based feeding behavior (using the BioDAQ monitor) and ethanol consumption (using the IA2BC procedure) in adult animals subjected to neonatal HI and treated with or without MPH. Male Wistar rats were divided into four groups (n = 10-12/group): control saline (CTS), CTMPH, HI saline (HIS) and HIMPH. The HI procedure was conducted at postnatal day (PND) 7 and behavioral analyses between PND 60-90, in which MPH (2.5 mg/kg, i.p.) was administered 30 min prior to each behavioral evaluation (6 sessions in BioDAQ and 12 sessions in the IA2BC protocol). HI animals had a dysregulated feeding intake shortly after eating a small piece of the palatable diet, and MPH reversed this dysregulated pattern. However, when the palatable diet was freely available, MPH stimulated a higher intake of this diet in the first exposure day, and this effect was potentialized in HIMPH rats. Increased ethanol intake was observed in HI rats, and MPH administration alleviated this behavior; contrarily, MPH treatment in control rats induced an increase in ethanol consumption. The present findings give additional support to the relationship between neonatal HI and ADHD but the differential response to MPH in control or HI animals highlights the importance of avoiding indiscriminate use of MPH by healthy individuals.


Assuntos
Estimulantes do Sistema Nervoso Central , Metilfenidato , Animais , Etanol , Comportamento Alimentar , Humanos , Hipóxia/tratamento farmacológico , Isquemia , Masculino , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Ratos , Ratos Wistar
3.
Int J Dev Neurosci ; 81(6): 510-519, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34021639

RESUMO

Perinatal asphyxia is a peripartum event that can cause permanent sequelae to the newborns, affecting the brain development. Recently, it has been demonstrated that epigenetics mechanisms play an important role in this injury and that folic acid (FA) supplementation during pregnancy can affect these epigenetics modifications as well as gene expression. We have identified both positive and negative effects of FA treatment in rats submitted to a model of neonatal hypoxia-ischemia (HI). Considering that FA supplementation is already used in pregnant women and that HI occurs in the peripartum period, this study was designated to evaluate how gestational FA supplementation and neonatal HI affect: apoptosis (caspase-3) and expression of synaptic proteins (synapsin and PSD-95) and the methylation of histone H3 lysine (K) 4 and 27 in the rat hippocampus. Pregnant Wistar rats were divided according to the diets: standard (SD), supplemented with 2 mg/kg of FA or with 20 mg/kg of FA. HI procedure was performed at the 7th PND. Protein expression and H3 methylation were evaluated at the 60th PND in the rats' hippocampus. Neonatal HI increased caspase-3 expression decreased synapsin expression and reduced H3K4me2, -me3 and H3K27me2, -me3 in the ipsilateral hippocampus. FA only prevented the augment in caspase-3 expression. In conclusion, neonatal HI caused lasting effects on caspase-3-mediated cell death (prevented by the FA) and synaptic proteins in the rats' hippocampus. This is the first study to show that histone modifications may contribute to these pathological findings in the hippocampus of HI animals.


Assuntos
Caspase 3/metabolismo , Ácido Fólico/administração & dosagem , Hipocampo/efeitos dos fármacos , Histonas/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Sinapsinas/metabolismo , Animais , Apoptose/efeitos dos fármacos , Metilação de DNA , Feminino , Hipocampo/metabolismo , Masculino , Gravidez , Ratos , Ratos Wistar
4.
Int J Dev Neurosci ; 81(1): 60-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33135304

RESUMO

Neonatal hypoxia-ischemia (HI) can lead to cognitive impairments and motor dysfunction. Acrobatic exercises (AE) were proposing as therapeutic option to manage HI motor deficits, however, the cognitive effects after this treatment are still poorly understood. Therefore, we evaluated the effects of AE protocol on memory impairments and brain plasticity markers after Rice-Vannucci HI rodent model. Wistar rats on the 7th postnatal day (PND) were submitted to HI model and after weaning (PND22) were trained for 5 weeks with AE protocol, then subsequently submitted to cognitive tests. Our results showed recovery in novel object recognition (NOR) memory, but not, spatial Morris Water Maze (WM) memory after AE treatment in HI rats. BDNF and synaptophysin neuroplasticity markers indicate plastic alterations in the hippocampus and striatum, with maintenance of synaptophysin despite the reduction of total volume tissue, besides, hippocampal HI-induced ipsilateral BDNF increased, and striatum contralateral BDNF decreased were noted. Nevertheless, the exercise promoted functional recovery and seems to be a promising strategy for HI treatment, however, future studies identifying neuroplastic pathway for this improvement are needed.


Assuntos
Hipóxia-Isquemia Encefálica/psicologia , Hipóxia-Isquemia Encefálica/reabilitação , Transtornos da Memória/psicologia , Transtornos da Memória/reabilitação , Condicionamento Físico Animal/psicologia , Reconhecimento Psicológico , Animais , Animais Recém-Nascidos , Atrofia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/anatomia & histologia , Aprendizagem em Labirinto , Destreza Motora , Neostriado/anatomia & histologia , Desempenho Psicomotor , Ratos , Ratos Wistar , Recuperação de Função Fisiológica , Memória Espacial , Sinaptofisina/metabolismo
5.
J Psychopharmacol ; 34(7): 750-758, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255391

RESUMO

BACKGROUND: Methylphenidate (MPH) is a stimulant drug mainly prescribed to treat cognitive impairments in attention-deficit/hyperactivity disorder (ADHD). We demonstrated that neonatal hypoxia-ischemia (HI) induced attentional deficits in rats and MPH administration reversed these deficits. However, MPH effects on memory deficits after the HI procedure have not been evaluated yet. AIMS: We aimed to analyze learning and memory performance of young hypoxic-ischemic rats after MPH administration and associate their performance with brain-derived neurotrophic factor (BDNF) levels in the prefrontal cortex and hippocampus. METHODS: Male Wistar rats were divided into four groups (n=11-13/group): control saline (CTS), control MPH (CTMPH), HI saline (HIS) and HIMPH. The HI procedure was conducted at post-natal day (PND) 7 and memory tasks between PND 30 and 45. MPH administration (2.5 mg/kg, i.p.) occurred 30 min prior to each behavioral session and daily, for 15 days, for the BDNF assay (n=5-7/group). RESULTS: As expected, hypoxic-ischemic animals demonstrated learning and memory deficits in the novel-object recognition (NOR) and Morris water maze (MWM) tasks. However, MPH treatment did not improve learning and memory deficits of these animals in the MWM-and even disrupted the animals' performance in the NOR task. Increased BDNF levels were found in the hippocampus of HIMPH animals, which seem to have been insufficient to improve memory deficits observed in this group. CONCLUSIONS: The MPH treatment was not able to improve memory deficits resulting from the HI procedure considering a dose of 2.5 mg/kg. Further studies investigating different MPH doses would be necessary to determine a dose-response relationship in this model.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Metilfenidato/farmacologia , Animais , Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/fisiopatologia , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Transtornos da Memória/patologia , Ratos , Ratos Wistar
6.
Exp Neurol ; 315: 88-99, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30771298

RESUMO

Perinatal complications such as birth asphyxia were associated with a higher risk for Attention-Deficit/Hyperactivity Disorder (ADHD) in humans. Data from a rat model of neonatal hypoxia-ischemia (HI) have revealed inattention, impulsive behavior and dopamine (DA) disturbances in the prefrontal cortex (PFC), confirming the face validity and construct validity for ADHD study. However, the predictive validity (similar therapeutic efficacy of the pharmacological treatment available in the clinic) should be considered. Therefore, we aimed to investigate the effects of methylphenidate (MPH) - the treatment of choice for ADHD - on exploratory and attentional flexibility behaviors and DA-related proteins in the PFC of animals submitted to neonatal HI. Male Wistar rats were divided into four groups: control saline (CTS, n = 12), control MPH (CTMPH, n = 12), HI saline (HIS, n = 13) and HIMPH (n = 12). The HI procedure was conducted at postnatal day (PND) 7 and behavioral measures between PND 30-40, followed by protein analysis in the PFC. The MPH administration (2.5 mg/kg, i.p.) occurred 30 min prior each behavioral session and euthanasia for western blot analysis. We observed that the MPH increased the locomotor activity in the open field especially in HI rats. In the attentional-set shifting task, the MPH reversed the HI- induced attentional inflexibility, but impaired the task acquisition in control rats. Neonatal HI resulted in lower DA D2 receptors expression but also decreased DA transporter (responsible for DA reuptake) and increased pTH (phosphorylated-tyrosine hydroxylase) levels in the PFC, probably to compensate the dysfunctional DA transmission. This compensation was higher in the HIMPH group and it could explain the improvement in the attentional flexibility as well as the increased locomotor activity in this group. Taken this data together, we can assume the predictive validity of the HI model for the ADHD study concerning the impact of MPH treatment on attentional parameters.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Atenção/efeitos dos fármacos , Estimulantes do Sistema Nervoso Central/uso terapêutico , Hipóxia-Isquemia Encefálica/psicologia , Metilfenidato/uso terapêutico , Animais , Animais Recém-Nascidos , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Comportamento Exploratório/efeitos dos fármacos , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Aprendizagem/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Receptores de Dopamina D2/biossíntese
7.
Brain Res ; 1707: 27-44, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30448443

RESUMO

The aim of this study was to evaluated motor function and morphological aspects of the components involved in motor control (sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle) in male Wistar rats exposed to a model of neonatal hypoxic-ischemic encephalopathy (HIE) and the possible influence of different physical exercise protocols - treadmill and acrobatic. Male Wistar rats at the 7th post-natal day (PND) were submitted to the HIE model and from the 22nd until 60th PND the exercise protocols (treadmill or acrobatic training) were running. After the training, the animals were evaluated in Open Field, Ladder Rung Walking and Rotarod tasks and after samples of the motor control components were collected. Our results evidenced that the acrobatic training reversed the hyperactivity and anxiety, caused locomotion improvement and decreased brain atrophy in HIE animals. We did not find morphological differences on sensorimotor cortex, spinal cord, sciatic nerve, neuromuscular junctions and skeletal muscle in the animals submitted to HIE model. These intriguing data support the statement of the Rice-Vannucci model does not seem to reproduce, in structures involved in control function, the damage found in humans that suffer HIE. Regarding the protocols of exercise, we proposed that the acrobatic exercise could be a good therapeutic option especially in children affected by neonatal HIE and can be responsible for good results in cognitive and motor aspects.


Assuntos
Hipóxia-Isquemia Encefálica/fisiopatologia , Atividade Motora/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Feminino , Hipóxia/fisiopatologia , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/fisiopatologia , Locomoção/fisiologia , Masculino , Condicionamento Físico Animal/métodos , Gravidez , Ratos , Ratos Wistar , Córtex Sensório-Motor/fisiopatologia
8.
Int J Dev Neurosci ; 71: 181-192, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30315904

RESUMO

Folic acid (FA) is a B-complex vitamin important to the development of the fetus, being supplemented during pregnancy. Our recent findings showed that gestation supplementation (normal and excess doses) prevented the cognitive deficits and BDNF imbalance in adult rats that were submitted to neonatal hypoxia-ischemia (HI). To better understand this protective effect, the present study aimed to evaluate whether FA supplementation could be related to (1) maternal behavior, memory and Na+, K+ - ATPase activity in the hippocampus of the dams; (2) on somatic growth, early neurobehavioral development and Na+, K+ - ATPase activity in the hippocampus of the offspring; and (3) the effects of this supplementation in pups submitted to neonatal HI. Pregnant Wistar rats were divided into three groups, according to the diet they received during gestation: standard diet (SD), supplemented with 2 mg/kg of FA (FA2 - normal dose) and supplemented with 20 mg/kg of FA (FA20 -excessive dose). At the 7th PND pups were submitted to the Levine-Vannucci model of HI. During weaning the maternal behavior, the somatic growth and the neurobehavior development of pups were assessed. After weaning, the memory of the dams (by the Ox-maze task) and the Na+, K+ - ATPase activity in the hippocampus of both dams and offspring were evaluated. Considering the dams (1), both doses of FA did not alter the maternal behavior or the Na+, K+ - ATPase activity in the hippocampus, but a memory deficit was observed in the high FA-supplemented mothers. Considering the offspring (2), both FA doses did not affect the somatic growth or the neurobehavior development, but the FA20 pups had a decreased Na+, K+ - ATPase activity in the hippocampus. The FA supplementation did not change the parameters evaluated in the HI rats (3) and did not prevent the decreased Na+, K+ - ATPase activity in the hippocampus of the HI pups. These results indicate that normal FA supplementation dose does not influence the maternal behavior and memory and does not impact on the offspring early development in rats. Further studies are needed to confirm the effects of the high FA supplementation dose in the dams' memory and in the Na+, K+ - ATPase activity in the hippocampus of the offspring.


Assuntos
Ácido Fólico/administração & dosagem , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Hipóxia-Isquemia Encefálica/patologia , Comportamento Materno/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Animais Recém-Nascidos , Suplementos Nutricionais , Feminino , Idade Gestacional , Masculino , Gravidez , Ratos , Ratos Wistar
9.
J Nutr Biochem ; 60: 35-46, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30064014

RESUMO

Folic acid (FA) supplementation (400 µg/day) has been recommended during pregnancy to prevent neural tube defects. However, in some countries, flours are required to be fortified with FA, possibly increasing the levels of this vitamin in pregnant women. Our previous studies have evidenced a dual effect of the FA treatment in a rat model of neonatal hypoxia-ischemia (HI). Aiming to better correlate with humans, this paper evaluated the effects of two different levels of FA supplementation during pregnancy on memory parameters and neuronal survival and plasticity in the hippocampus of rats submitted to the neonatal HI. During pregnancy, female Wistar rats received one of these diets: standard (SD), supplemented with 2 mg/kg of FA or with 20 mg/kg of FA. At the 7th PND, rats suffered the HI procedure. At the 60th PND rats were evaluated in the open field, Morris water maze, novel-object recognition and inhibitory avoidance tasks. Furthermore, neuronal density, synaptophysin densitometry and BDNF concentration were assessed in the hippocampus. Both doses of FA prevented the HI-induced memory impairments. The supplementation reversed the BDNF late increase in the hippocampus of the HI rats, but did not inhibit the neuronal death. In conclusion, FA supplementation during pregnancy prevented memory deficits and BDNF imbalance after neonatal HI. These findings are particularly relevant because neuroprotection was achieved even in the high level of FA supplementation during pregnancy, indicating that this intervention would be considered secure for the offspring development.


Assuntos
Animais Recém-Nascidos , Fator Neurotrófico Derivado do Encéfalo/análise , Disfunção Cognitiva/prevenção & controle , Ácido Fólico/administração & dosagem , Hipocampo/química , Hipóxia-Isquemia Encefálica/complicações , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Disfunção Cognitiva/etiologia , Suplementos Nutricionais , Feminino , Troca Materno-Fetal , Fármacos Neuroprotetores , Gravidez , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...